Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data.
نویسندگان
چکیده
We introduce efficient Markov chain Monte Carlo methods for inference and model determination in multivariate and matrix-variate Gaussian graphical models. Our framework is based on the G-Wishart prior for the precision matrix associated with graphs that can be decomposable or non-decomposable. We extend our sampling algorithms to a novel class of conditionally autoregressive models for sparse estimation in multivariate lattice data, with a special emphasis on the analysis of spatial data. These models embed a great deal of flexibility in estimating both the correlation structure across outcomes and the spatial correlation structure, thereby allowing for adaptive smoothing and spatial autocorrelation parameters. Our methods are illustrated using a simulated example and a real-world application which concerns cancer mortality surveillance. Supplementary materials with computer code and the datasets needed to replicate our numerical results together with additional tables of results are available online.
منابع مشابه
Bayesian structural learning and estimation in Gaussian graphical models
We propose a new stochastic search algorithm for Gaussian graphical models called the mode oriented stochastic search. Our algorithm relies on the existence of a method to accurately and efficiently approximate the marginal likelihood associated with a graphical model when it cannot be computed in closed form. To this end, we develop a new Laplace approximation method to the normalizing constan...
متن کاملSpatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملComputational Aspects Related to Inference in Gaussian Graphical Models With the G-Wishart Prior
We describe a comprehensive framework for performing Bayesian inference for Gaussian graphical models based on the G-Wishart prior with a special focus on efficiently including nondecomposable graphs in the model space. We develop a new approximation method to the normalizing constant of a G-Wishart distribution based on the Laplace approximation. We review recent developments in stochastic sea...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملBayesian Graphical Models for Multivariate Functional Data
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. By functional data, we refer to data that are realizations of random functions varying over a continuum (e.g., images, signals). We introduce a notion of conditional independence between random func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 106 496 شماره
صفحات -
تاریخ انتشار 2011